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Abstract 
This paper describes an integrated demonstration 

of ground-based contingent planning, robust 
execution and autonomous instrument placement for 
the efficient exploration of a site by a prototype Mars 
rover. 

1.1. Introduction 
Approaching science targets, such as rocks, and 

placing instruments against them to take 
measurements is the raison d’être of a planetary 
surface exploration rover, such as the planned 2009 
Mars Science Laboratory (MSL) rover.  This is 
necessary to acquire samples, determine mineralogy, 
obtain microscopic images and perform other 
operations needed to understand the planet’s geology 
and search for evidence of past or present life.  
Significant science cannot be done with remote 
measurements only. 

 
Figure 1 K9 Rover autonomously places a 
microscopic camera to examine a rock target in 
the NASA Ames Marscape. 

In order to accomplish the task of instrument 
placement within a single cycle with the robustness 
required for a mission, the on-board software must 
be able to handle failures and uncertainties 

encountered during the component tasks.  A task 
may fail, requiring recovery or retrying.  Tasks may 
exhibit a high degree of variability in their resource 
usage, using more (or less) time and energy than 
expected.  Finally, the state of the world and the 
rover itself may be predictable only to a limited 
extent. Exploring multiple rock targets further 
exacerbates this situation.  These factors require that 
the rover’s software have the ability to reason about a 
wide range of possible situations and behaviors.  A 
simple script is insufficient; instead, the rover can 
use either on-board task planning or off-board 
planning in conjunction with robust on-board 
execution. 

In November and December of 2002, 
researchers at NASA Ames Research Center (ARC) 
successfully demonstrated an end-to-end single cycle 
instrument deployment scenario from ground 
operations and planning to execution and science 
data capture.  This demonstration occurred in the 
newly constructed Marscape rover test site. 

The demonstration mission scenario begins with 
the NASA Ames K9 rover at the site to be explored 
(a simulated lakebed in the Marscape).  K9 acquires 
a panoramic set of stereo images of the site.  These 
are downloaded and processed off-board to create a 
virtual terrain model of the environment, rendered in 
the Ames Viz 3D virtual reality interface.  The 
mission controllers explore the virtual world and 
choose rock targets of interest.  For each rock they 
decide where the rover needs to be to examine it, 
what measurements are desired at that location, and 
how much these measurements are worth.  In 
addition, they specify the allowed paths between the 
various locations, including the start position and any 
additional decision points.  This information is 
automatically saved to a file for use by the mission 
planner. 

Our goal is for the rover to obtain, in a single 
command cycle, the set of measurements that 
maximize the expected utility subject to constraints 
on time, power consumption and where it can go.  
We accomplish this using an off-board mixed 
initiative contingent planner along with robust on-
board execution.  This is consistent with current 
mission practice, which requires intensive sequence 
verification before uplink.  In addition, the perceived 
additional risk of an on-board planner could delay 
acceptance by mission managers. 



The planner generates a sequence, with 
contingencies, that is uploaded to the rover, where it 
is executed by the conditional executive.  The rover 
navigates, via decision points, to rock targets where 
it stops and autonomously places an arm mounted 
microscopic camera against the target and acquires a 
measurement. 

The remainder of this paper describes the 
various components of this demonstration: the K9 
rover, the Marscape test facility, the science interface 
(Viz), the contingent planner, the conditional 
executive, and the instrument placement system. 

1.2. Robotic Testbed and Outdoor Test Facility 

1.3. K9 Rover 
The K9 Rover is a 6-wheel steer, 6-wheel drive 

rocker-bogey chassis outfitted with electronics and 
instruments appropriate for supporting research 
relevant to remote science exploration.  The main 
CPU is a 750 MHz PC104+ Pentium III running the 
Linux operating system.  An auxiliary 
microprocessor communicates with the main CPU 
over a serial port and controls power switching and 
other I/O processing.  The motion/navigation system 
consists of motor controllers for the wheels and 
pan/tilt unit, a compass, and an inertial measurement 
unit. 

The K9 rover software architecture uses the 
Coupled Layered Architecture for Robotic 
Autonomy (CLARAty)[9] developed at JPL, in 
collaboration with ARC and Carnegie Mellon 
University.  By developing our instrument placement 
technology under the CLARAty architecture, we can 
easily port the system to other CLARAty robots. 

1.3.1. K9 Cameras 

 
Figure 2 K9 camera systems.  Mast-mounted 
navigational and science cameras (left) and front 
hazard avoidance cameras (right). 

K9 is equipped with three camera pairs: a front-
mounted forward looking pair of b/w stereo hazard 
cameras and mast mounted stereo pairs of high 
resolution color science cameras and wide field of 
view b/w navigation cameras (Figure 2). The 
navigation and science stereo pairs are mounted on a 
common pan-tilt unit such that they can acquire 
image panoramas from around the rover. 

The hazard cameras overlook the arm 
workspace.  Being fixed, and close to the target area, 
they are the easiest to calibrate with respect to the 

arm, and are used to build 3D models of the 
workspace prior to placing an instrument. 

1.3.2. Instrument Arm 

 
Figure 3 K9 5 DOF arm deployed. 

K9’s instrument arm (Figure 3) is a 5-DOF 
robotic manipulator based on a 4 DOF FIDO 
MicroArm IIA design from JPL[11].  It is 
approximately 5.0 kg with a total extended length of 
0.79 meters.  The waist yaw, shoulder pitch, elbow 
pitch, forearm twist (designed at Ames), and wrist 
pitch joints of the arm allow arbitrary x-y-z 
instrument placement as well as pitch and yaw 
control within the arm workspace.  These rotational 
aluminum joints are connected by graphite epoxy 
tube links.  The links are configured in a side-by-side 
orientation, with the two links running directly next 
to each other. 

The payload mass for K9’s arm is estimated to 
be about 1.5 kg (3.3 lbs) with a strong-arm lifting 
capacity of about 2.5 kg (5.5 lbs) when fully 
extended in the horizontal position.  Each joint in the 
arm has an embedded MicroMo 1319 series motor 
with an integrated planetary gear head and magnetic 
encoder.  (Additional harmonic drive gearing was 
needed past the actuator to meet the significant 
torque requirements.)  The no-load output speed 
varies from joint to joint, but averages about 0.1 
radians per second.  External to each joint is a multi-
turn potentiometer that is coupled to the rotor and is 
used for initial arm calibration.  The calibration 
procedure and magnetic encoders result in a 
positional accuracy of +/- 2 mm. 

1.3.3. CHAMP Microscopic Camera 
Affixed at the end of K9’s arm is the CHAMP 

(Camera Hand-lens MicroscoPe) microscopic camera 
[8] (Figure 4).  It has a movable CCD image plane, 
allowing it to obtain focused images over a wide 
depth of field, from a few millimeters up to several 
meters.   

 Because rotation about CHAMP's long axis 
does not need to be controlled, placing CHAMP flat 
against a rock requires control of five degrees of 
freedom.  K9's arm has a full 5 degrees of freedom, 
removing the need to coordinate simultaneous arm 



and rover base motion.  The rover's base only needs 
to move to within arm's reach of the rock, and can 
remain stationary during arm movement. 

CHAMP has three spring-loaded mechanical 
distance sensors around its face that report contact 
with the rock. CHAMP can acquire a Z-stack of 
images from a target, each focused at a slightly 
different depth.  These can be combined into a 
composite focused image (Figure 14). 

 
Figure 4 CHAMP camera deployed onto rock. 

1.4. Marscape 

 

 
Figure 5 Marscape view toward dry lakebed and 
impact crater (top); Marscape elevation map 
showing streambed, delta, lakebed, volcano and 
chaotic terrain (bottom). 

The integrated demonstration took place in the 
Marscape (Figure 5), a 3/4-acre rover test site built at 
Ames.  Marscape is unique in that it features a richly 
varied topography with many occluded areas and 
consistent with those aspects of the Martian 
environment and geology of greatest scientific 
interest.  Marscape’s design includes a dry streambed 
with exposed sedimentary layers.  The streambed 
drains into a dry lakebed with evaporite deposits.  
Overlapping the lakebed is an old meteorite impact 

crater, partially broken in a manner consistent with 
past water erosion.  A volcanic zone (left in elevation 
map view) intruding onto the lakebed gives rise to an 
area of past hydrothermal activity, including hot 
springs, known to be excellent sites for the 
preservation of evidence for life.  In the top part of 
the image we see a basalt magmatic cap has intruded 
over the sedimentary environment, giving rise to a 
chaotic terrain. 

A trailer provides power, wireless network 
coverage, and shelter for engineers monitoring 
operations. 

1.5. Ground Operations 

1.6. Scene Visualization and Activity 
Specification 

Stereo imagery from K9 is downloaded to the 
Ground Operations station and processed by the 
“Ames stereo-pipeline” to generate accurate high-
resolution 3D terrain models of the remote site using 
binocular disparity information.  The terrain model is 
viewed and manipulated in a virtual reality system 
called “Viz” [10].  Viz is an interactive simulation 
environment equipped with a number of science 
analysis and operations tools.  These include 
lighting, pose and viewpoint simulation (Figure 6).  
A suite of measurement tools is also provided that 
allows intuitive interrogation of the remote site, and 
Viz is integrated with a kinematic simulation engine, 
called “VirtualRobot” (Figure 6), that provides rover 
pose and viewpoint simulation capabilities for 
operations planning. 

 
Figure 6 The Viz 3-D interface (left) and Virtual 
Robot control panel (right).  

Using these tools, scientists specify a series of 
science targets and the paths and waypoints that 
connect them (Figure 7).  For each target, the 
objectives are specified, along with the utility of each 
objective.  This information is used to create an 
“operations file” which is post-processed to create an 
input file for the contingent planner (Section 3.2).  
The planner takes the list of desired science targets 
and utilities and creates a plan that maximizes 
science return subject to resource and safety 
constraints.  We expect to do more work in the future 



to “close the loop” between the planner and Viz (e.g. 
to visualize the results from the planner directly in 
the 3-D scene) so that scientists can get feedback 
about which targets will be visited and which will 
not and can adjust their plans accordingly. 

 
Figure 7 A set of science targets and waypoints. 

1.7. Contingent Planning 
 

X0 
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X1: Decision point 
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Figure 8 Waypoint and utility planning for 
instrument placement. 

Once a set of science objectives has been chosen 
using Viz, these objectives, and their values are 
passed to a contingent planning system.  This 
planning system determines which of the objectives 
to pursue along with the detailed commands 
necessary to achieve those objectives.  In addition, it 
also inserts “contingency branches” into the plan to 
cover situations where the plan might possibly fail.  
In the example shown in Figure 8, suppose the 
planner initially constructs a plan to go to waypoint 
X1, and then location X3.  It could then add a 
contingency branch to go to X2 instead, if, upon 
arrival at X1, there is not enough power or time 
available to continue to X3. 

1. Generate seed plan
2. Identify best branch point
3. Generate contingency branch
4. Evaluate & integrate branch

?? ? ?

Figure 9 The Just-In-Case planning approach. 
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Figure 10 Architecture of the contingency 
planner. 

This contingency planning is done using an 
incremental Just-In-Case approach [5], as illustrated 
in Figure 9.  First a “seed” plan is generated having 
maximum expected utility.  That is, the plan achieves 
the best objectives possible given the expected 
resources available (time and energy), and expected 
consumption of those resources by the actions 
involved.   This plan is then evaluated to determine 
where it might fail, given uncertainty in resource 
consumption by the various actions involved.  A 
branch point is then chosen, either by a user, or by 
using simple heuristics.   An alternative, or 
contingency, plan is then constructed for this branch, 
and incorporated into the primary plan.  The 
resulting conditional plan is again evaluated, and 
additional branches can be added as needed.  

The architecture of the contingency planner is 
shown in Figure 10.  The contingency planner makes 
use of the Europa planning engine [7][6] to generate 
seed plans, and to generate the plans for the 
contingency branches.  For constructing a seed plan, 
the contingency planner gives Europa the goals, 
expected resource availability, and expected resource 
consumption of actions.  When the plan comes back, 
the contingency planner evaluates it using Monte 
Carlo simulation to determine the impact of 
uncertainty in resource usage.   The plan is then 
displayed in a JAVA GUI (Figure 11) for the user to 
examine.   The user can select places where the 
planner should try to build a contingency branch.  To 
build the branch, the planner passes appropriate 
goals, the prefix of the plan (prior to the branch 
point), and resource availability to Europa.  In this 



case, the expected resource availability is defined by 
the branch condition, because that bounds the 
resources that will be available if the branch is taken.  

 
Figure 11 Planner GUI, displaying a set of 
branching timelines for different attributes like 
rover location and arm state. 

The problem of automatically choosing good 
branch points and good branch conditions is quite 
hard in general (see [1], [4] for details).  Intuitively, 
it might seem that a good place to put a contingency 
branch is at the place where the plan is most likely to 
fail.  Unfortunately, this is often near the end of the 
plan, when resources (time and energy) are nearly 
exhausted.  With few resources remaining, there may 
not be any useful alternative plans.   

Instead, one would like to anticipate failures 
earlier in the plan, when useful alternatives remain.  
In other words, the planner is looking for the point(s) 
in the plan where a contingent branch could be added 
that would maximally increase the overall utility of 
the plan.  In general, this quantity is very difficult to 
compute.  In [4] we outline a heuristic technique for 
estimating both the expected gain of a given branch 
point, and the condition for that branch.  This 
information can be used to do automatic branch point 
and condition selection.  We have not yet completed 
the implementation and testing of this technique, but 
expect to incorporate it into the contingency planner 
in the near future.  

1.8. Rover Operations 
Once generated, the sequence with contingent 

branches is uplinked to K9. 

1.9. Robust Execution 
The CRL Executive is responsible for 

interpretation of the contingent plan coming from the 
ground and generated by the contingent planner.  The 
CRL Executive is designed to be more capable than 
traditional sequence execution engines; it can handle 
the expressive plans generated by the contingent 
planner and can perform limited plan adaptation 
itself. 

The planner translates its plan into the 
Contingent Rover Language (CRL) for uplink, and 

the CRL Executive interprets the CRL-encoded plan 
directly. CRL is a flexible, conditional sequence 
language that allows for execution uncertainty [2]. 
CRL expresses temporal constraints and state 
constraints on the plan, but allows flexibility in the 
precise time that actions must be executed. 
Constraints include conditions that must hold before, 
during, and after actions are executed.  A recent 
addition to CRL is the ability to specify concurrent 
threads of activity.  

A primary feature of CRL is its support for 
contingent branches to handle potential problem 
points or opportunities in execution. The contingent 
branches and the flexible plan conditions allow a 
single plan to encode a large family of possible 
behaviors, thus providing responses to a wide range 
of situations. 

The structure of the CRL plan language and its 
interpretation are completely domain-independent. 
Domain-dependent information is added by 
specifying a command dictionary, with command 
names and argument types, and a command interface, 
which passes commands to the rover and return 
values and state information from the rover. 

The CRL Executive is responsible for 
interpreting the CRL command plan coming from 
ground control, checking run-time resource 
requirements and availability, monitoring plan 
execution, and potentially selecting alternative plan 
branches if the situation changes. At each branch 
point in the plan, there may be multiple eligible 
options; the option with the highest expected utility 
is chosen.  For this demonstration, the contingent 
planner generated mutually exclusive branches. 

A novel feature of the CRL Executive is its 
support for “floating contingencies,” which are plan 
fragments that may be inserted at any point in 
execution [3].  For example, a plan to perform 
opportunistic science during a traverse is naturally 
expressed as a floating contingency, since the 
presence and position of an interesting science target 
is unknown before the traverse.  Likewise, a plan to 
stop and recharge the battery is another example of a 
floating contingency.  In general, floating 
contingencies would be impractical for the planner to 
consider because of the large number of possible 
branch points that they would add to a plan. 

The CRL Executive is implemented as a multi-
threaded, event-based system (see Figure 12).  
Around a central Executive event-processing loop 
are threads to handle timing, event monitoring, 
action execution monitoring, and telemetry 
gathering.  The central event processor sends 
requests to the other threads (for example, "wake up 
at time 20" or "notify when battery state of charge is 
below 4Ah") and receives events relevant to those 
requests.  This architecture allows the CRL 
Executive to support concurrent activities and 
flexible action conditions expressible within the CRL 
language. 
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Figure 12 CRL Executive structure.  The main 
event loop communicates with other threads for 
services such as timing, action monitoring, and 
event monitoring.  External connections are to a 
planner, which supplies new plans to execute, and 
a rover real-time system, which executes actions 
and supplies telemetry data. 

1.10. Target Approach and Instrument 
Placement  

The uploaded CRL sequence commands K9 to 
move to rock targets, via waypoints.  K9 stops at a 
target and assesses the rock scene in front of it to 
autonomously place CHAMP and acquire 
microscopic images.  Figure 13 shows this sequence 
of activities in greater detail.  

Currently, the rover uses deduced reckoning to 
maneuver to a location in front of the target.  We do 
not yet use visual tracking, or other means, to 
maintain a fix on the rock target, or even a location 
on the rock, as the rover moves.  Given our 
combined error budget of 30cm and navigation error 
of 5%, we can only work with targets within 3m 
distance of the rover.  

Once the rover has moved up to the target, it 
must determine where to place the instrument, what 
pose is needed, and check that the target surface will 
permit the instrument to be placed there.    

If Mission Control specified a particular final 
pose for the instrument, relative to a target that has 
been accurately tracked, then this task is 
unnecessary.  Scientists at Mission Control might 
wish to specify an entire rock as a target, not just a 
given point.  Not only is such over-specification 
unnecessary; it may over-constrain the problem, and 
might not even be feasible prior to the rover 
approaching close enough to the rock to see it in 

sufficient detail.  Or it might simply not be possible 
to track a single point with enough precision. In these 
cases, scientists are compelled to request a 
measurement anywhere on a rock (or large area on 
it). 

The first step in determining where to place an 
instrument on a rock target (or other large area) is to 
obtain a 3D scan of the work area.  This can be done 
with the stereo hazard cameras, which have the best 
view of the work area and are the easiest to calibrate 
with respect to the arm. 
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Figure 13 Instrument placement execution flow. 

The rock (or target area) in the 3D model of the 
work area is segmented from the background using 
an iterative 3D clustering algorithm[11].  This 
algorithm is very robust to noise, requiring only that 
the ground be relatively flat (but at an arbitrary 
orientation) and that the work area have at most one 
rock significantly larger than any clutter in the scene. 

All points on the target rock are checked for 
consistency with the rover instrument (CHAMP) to 
ensure that it does not get damaged during 
placement.  The simplest check for each point is to 
find all points within a given radius, compute the 
best-fit plane, and check that maximum deviations do 
not exceed some preset tolerance. 

Finally, the instrument can be placed.  First, via 
a series of pre-planned waypoints the arm is un-
stowed and put in a holding position.  Next it goes to 
a pose near the highest priority target pose in the 
workspace, holding back a safe distance along the 
target surface normal. To compensate for possible 
small errors in surface location, the instrument's final 
approach is along the measured normal to the target 



rock face, moving slowly forward until contact is 
confirmed by mechanical sensors. 

Once the arm places the camera, we obtain 
microscopic images of the rock surface (Figure 14). 

 
Figure 14 Composite microscopic image of target 
rock. 

1.11. Summary 
It has been speculated that the use of nuclear 

power to extend the 2009 Mars rover mission to 
1000 days decreases the need for autonomy, as there 
would be sufficient time to accomplish 
measurements in the traditional, time consuming 
way, without having to risk autonomy.  This is 
fallacious for several reasons.  Over time the risk of a 
rover failure increases, hence it is important to get 
the baseline measurements as quickly as possible.  
The cost of operating a mission in the traditional 
manner, with a large co-located science and 
operations team for 1000 days is very high.  In fact, 
it may not even be possible to obtain sufficient 
qualified personnel prepared to take time out from 
their careers to operate a rover for 3 years.  
Autonomy can alleviate this bottleneck by increasing 
the rate of science return and decreasing the 
operations overhead. 

Ultimately, to fully explore an area to 
understand its geology and search for evidence of 
past or present life may require examining many 
hundreds, if not thousands, of rocks.  Without 
automation, a few score rocks at most can be 
examined in a single mission. 
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